

What Type of Remote Sensing Imagery Is Right for Me?

Relating Benthic Cover Data Resolution to Management Needs

Sediment Profiling Imagery

In situ photograph that penetrates the seafloor and captures a vertical slice of the bottom (15 x 25 cm) in shallow to deep waters (<1 meter to 4.000 meters)

How can I use these data?

- · Ground-truthing of remote sensing data
- · Habitat and species inventory
- · Sediment and habitat quality assessments
- Dredged material monitoring and impact
- · Mapping in turbid waters

What will I see?

Features at or below the sediment surface:

- Biological features (shellfish, seagrass)
- Geophysical features (sediments, layering)
- · Anthropogenic debris and subsurface methane pockets

Limitations

- Difficult to relate small sample footprint to entire
- Interpolated maps may under- or overestimate the resource or miss valuable information

Airborne Digital Imagery

Panchromatic (1-band), multispectral (2 to 7 bands) and hyperspectral (8 or more bands) imagery with pixel sizes 0.25 to 3 meters* (variable depending on mission requirements)

How can I use these data?

- Damage assessment and mitigation
- Permitting, monitoring, and leasing
- Guiding in situ studies

What will I see?

- Areal extent of resources, including seagrass beds and patches, coral reefs, individual corals, and ovster reefs
- Basic sediment types

Limitations

- Depth penetration limited by water clarity
- Not suitable for identifying species or resource health (stress, disease)

High-Resolution Satellite Imagery

Panchromatic (1-band), multispectral (2 to 7 bands), and hyperspectral (8 or more bands) imagery with pixel sizes 0.7 to 10 meters

KONOS Image

displayed at 1:14,000)

How can I use these data?

- · Resource inventory
- Monitoring
- Guiding in situ studies

What will I see?

- Areal extent of resources, including seagrass beds and patches, coral reefs, and individual corals
- Basic sediment types

Limitations

- Depth penetration limited by water clarity
- Not suitable for identifying species or assessing resource health
- Cannot control for clouds
- Imagery may not have been acquired during conditions optimal for benthic mapping (tidal stage, sun angle)

GeoVantage Digital Imag

*Resolution for some airborne digital sensorsfor example, AVIRIS hyperspectral sensor ERmay be up to 20 meters.

2 meters

4 meters

8 meters

16 meters

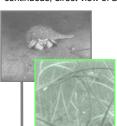
SPOT Image

(displayed at 1:3,500)

**Panchromatic imagery acquired from high resolution satellites has pixel sizes as small

as 0.7 meters. However, panchromatic imagery has limited benthic mapping applications because it has a limited blue

band and is calibrated to the near infra red


32 meters Resolutio

Resolution

Underwater Videography

In situ video stream of the seafloor surface that provides continuous, direct view of about 1 meter of the seafloor

1 meter

How can I use these data?

- · Validation and assessment of remotely sensed data
- · Assessment of health or status of some resources using long-term monitoring
- · Habitat inventory and mapping
- Damage assessments and mitigation
- · Mapping in turbid waters

What will I see?

- · Seagrass, macro algae, shellfish beds, corals
- Species and health
- · Sediment types (sand, gravel) and substrate (shell hash, detrital mats)

- · Difficult to relate small sample footprint to entire habitat
- · Interpolated maps may under- or overestimate the resource or miss valuable information
- · Interpretation is labor-intensive

Analog Aerial Photography

Panchromatic (1-band) or multispectral (3-band) with pixel sizes 1 foot to 3 meters (variable depending on mission requirements)

How can I use these data?

- · Resource inventory
- Damage assessment and mitigation
- Permitting, monitoring, and leasing
- Guiding in situ studies
- Depth evaluations (stereo)

What will I see?

- · Areal extent of resources. including seagrass beds and patches, coral reefs, and individual corals
- · Basic sediment types

Limitations

- · Film format
- Depth penetration limited by water clarity
- Not suitable for identifying individual species or assessing resource health

Mid-Resolution Satellite Imagery

Panchromatic** (1-band), multispectral (2 to 7 bands), and hyperspectral (8 or more bands) imagery with pixel sizes 10 to 30 meters How can I use these data?

- · Hypothesis formulations
- Identification of potential resources for detailed mapping
- Generalized mapping of a resource

What will I see?

- Location of resources such as seagrass beds and coral reefs
- Land and water interface
- Relationships to major terrestrial features

Limitations

- Imagery may not have been acquired during conditions optimal for benthic mapping (tidal stage, sun angle)
- Cannot control for clouds
- Larger pixel size may over- or underestimate aerial extent of resource
- Small features will not be detected
- Panchromatic imagery has limited benthic mapping applications**

